当前位置: 首 页 - 科学研究 - 学术报告 - 正文

数学学院、所2022年系列学术活动(第104场):朱文圣 教授 东北师范大学

发表于: 2022-08-01   点击: 

报告题目:Robust Subgroup Analysis for Network-Linked Data

报 告 人:朱文圣 教授


报告时间:2022年8月3日 星期三 9:00-10:00

报告地点:腾讯会议 ID:737-840-105


报告摘要:Modern applications often collect data with individuals connected by a network to effectively record relationship information between individuals. In this paper, we use both covariates and the network to identify subgroup structures from a heterogeneous population, where heterogeneity arises from unknown or unobserved latent factors. We propose a penalization based method for subgroup analysis based on the median regression model, which can automatically divide the samples into subgroups by penalizing pairwise difference of intercepts for individuals connected by an edge in the network. The proposed method can also be used to predict response variables for new subjects with only covariates by taking advantage of the network reconstructed after adding these new subjects. We suggest an implementation algorithm based on the local linear approximation to the nondifferentiable and nonconvex penalty function and establish the oracle properties of the proposed estimator under some regularity conditions. Our simulation studies show that the proposed method can effectively identify heterogeneous subgroups even when the network has errors or mis-specified edges. Finally, the advantages of the proposed method are further illustrated by the analysis on a housing price data set from real estate transactions.

报告人简介: 朱文圣,东北师范大学数学与统计学院教授、博士生导师、副院长。2006年博士毕业于东北师范大学,2008-2010年在耶鲁大学做博士后研究,2015-2017年访问北卡罗来纳大学教堂山分校。中国现场统计研究会计算统计分会副理事长、旅游大数据分会副理事长、数据科学与人工智能分会秘书长,中国概率统计学会副秘书长,吉林省现场统计研究会秘书长。研究方向为生物统计与精准医疗,在Journal of the American Statistical Association、Statistica Sinica、Test、Journal of Scientific Computing、中国科学等杂志发表学术论文多篇,主持并完成国家自然科学基金项目多项。